
Consistent Memory Management Conventions 1
ID: 476-BSI | Version: 6 | Date: 11/14/08 4:09:57 PM

Consistent Memory Management Conventions
Daniel Plakosh, Software Engineering Institute [vita1]

Copyright © 2005, 2008 Pearson Education, Inc.

2005-09-27; Updated 2008-10-06 L4 / D/P, L2

The most effective way to prevent memory problems is to be disciplined in writing memory management
code. The development team should adopt a standard approach and apply it consistently.

Development Context
Dynamic memory management

Technology Context
C, UNIX, Win32

Attacks
Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk
Standard C dynamic memory management functions such as malloc(), calloc(), realloc(), and free() [ISO/
IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from buffer overflow in
the heap, writing to already freed memory, and freeing the same memory multiple times (e.g., double-free
vulnerabilities).

Description
The most effective way to prevent memory problems is to be disciplined in writing memory management
code. The development team should adopt a standard approach and apply it consistently. Some good
practices include the following:

• Use the same pattern for allocating and freeing memory. In C++, perform all memory allocation in
constructors and all memory deallocation in destructors. In C, define create() and destroy() functions
that perform an equivalent function.

• Allocate and free memory in the same module, at the same level of abstraction. Freeing memory in
subroutines leads to confusion about if, when, and where memory is freed.

• Match allocations and deallocations. If there are multiple constructors, make sure the destructors can
handle all possibilities.

Steadfast consistency is often the best way to avoid memory errors. MIT krb5 Security Advisory 2004-00216

provides a good example of how inconsistent memory management practices can lead to software
vulnerabilities.

In the MIT krb5 library, in all releases up to and including krb5-1.3.4, ASN.1 decoder functions and their
callers do not use a consistent set of memory management conventions. The callers expect the decoders to
allocate memory. The callers typically have error-handling code that frees memory allocated by the ASN.1
decoders if pointers to the allocated memory are non-null. Upon encountering error conditions, the ASN.1

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html (Plakosh, Daniel)
16. http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html
http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt

Consistent Memory Management Conventions 2
ID: 476-BSI | Version: 6 | Date: 11/14/08 4:09:57 PM

decoders themselves free memory that they have allocated but do not null the corresponding pointers. When
some library functions receive errors from the ASN.1 decoders, they attempt to pass the non-null pointer
(which points to freed memory) to free(), causing a double-free.

This example also shows the value of setting dangling pointers to NULL.

References

[ISO/IEC 99] ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01
Programming languages — C. International
Organization for Standardization, 1999.

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by

Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights
reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior
written consent of Pearson Education, Inc.

